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Abstract. We study sequences of solutions to the inhomogeneous Landau-Fermi-Dirac equation
with Coulomb potential in which the quantum parameter converges to zero. Our main result
establishes the compactness of these sequences, which allows us to show that, up to a subsequence,
these solutions converge to a renormalized solution of the classical Landau equation with a defect
measure, as defined by Villani.

To do this, we work in the class of solutions that are obtained through approximation proce-
dures. For these solutions, we were able to show compactness in the vanishing quantum parameter
limit through a diagonal argument, which combines techniques from the study of Cauchy problems
for both the classical Landau and the Landau-Fermi-Dirac equations.
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1. Introduction

In 1936 Landau [1] proposed, based on phenomenological arguments, an equation that models
the behavior of dilute plasmas, today known as the Landau equation,

(1)
∂f

∂t
+ v · ∇xf = divv

(ˆ
a(v − v∗)

(
f∗∇vf − f∇v∗f∗

)
dv∗

)
.

The unknown f = f(t, x, v) represents the probability density of finding a particle at time t, in
position x, with velocity v. Above, we have used the abbreviation f∗ for the function f(t, x, v∗) as
well as the convention (divvM)i =

∑N
j=1

∂Mij

∂vj
for the divergence of a matrix function M .

The left-hand side is the transport part of the equation, which models the inertial aspect of the
particles’ movement. In fact, if the right-hand side of the equation were zero, then (1) would reduce
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to the free transport equation, and the particles would then follow straight trajectories along the
characteristic lines.

The right-hand side, on the other hand, models how these trajectories are affected due to binary
collisions between the particles. The matrix a(v−v∗) inside the integral is called the collision kernel
and typically has the form

(2) a(z) = Γ(|z|)
(
In − z ⊗ z

|z|2

)
,

where In denotes the n × n identity matrix and Γ(|z|) is an Lploc(RN ) function, called the cross
section, which varies according to the interaction potential between the particles. This way, if the
particles interact through a potential of the type

U(x) =
k

|x|s
,

then it can be shown that Γ(|z|) = K|z|θ, where θ = 3− 4/s, for s ≥ 2 (see, for example, [5]). The
cases typically considered in the literature correspond to when Γ(|z|) = K|z|γ+2, where −3 ≤ γ ≤ 1.
If 0 < γ ≤ 1 we say the particles interact through a hard potential and if γ < 0 we say we’re dealing
with a soft potential.

Although not the way it was originally deduced, the (1) equation is generally seen as the asymp-
totic limit of the Bolzamann equation when the collisions are predominantly grazing, i.e. the angle
of deviation in each collision is small. This type of behavior is expected of very hot and rarefied
gases and, therefore, the Landau equation finds an important application in plasma physics.

In this case, the particles interact with each other through an Coulomb potential, where s = 1
and therefore γ = −3. This is the only physical potential among those dealt with in the literature,
which is why it is the one we will focus on in this paper. Despite its physicality, this is also the most
singular potential. In fact, we will see later that this singularity imposes problems even in defining
a solution to the equation, and we will see that the solutions constructed in the literature for the
equation with this potential are of the renormalized type.

The above description only assumes that the particles in question are point-like, as in classical
mechanics, and obey Maxwell-Boltzmann type statistics. If, on the other hand, we want a model
for quantum particles, some changes must be taken into account.

Take the case of fermions. These are particles that obey the Pauli exclusion principle, which
states that no two particles can be in the same quantum state at the same time. Statistically, this
implies that the distribution function must have at most one particle per h3/m3 of space, implying
the pointwise bound

(3) 0 ≤ f(t, x, v) ≤ 1

ε
≡ h3

m3β

Above we have that h is the Planck constant, m is the mass of the particle and β is called
the degeneracy of the particle. Fermions are particles that undergo a process of saturation: if we
already have too many particles in a given region of phase space, it becomes less likely that even
more particles will enter it. Thus, the collision probabilities for the quantum case are different from
those of the classical case, and this new underlying statistics is called Fermi-Dirac. Adapting the
Landau equation to these new probabilities gives rise to the so-called Landau-Fermi-Dirac (LFD)
equation, which reads

(4)
∂f

∂t
+ v · ∇xf = divv

(ˆ
a(v − v∗)

(
f∗(1− εf∗)∇vf − f(1− εf)∇v∗f∗

)
dv∗

)
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Historically, the first adaptation of the kinetic theory of gases to a quantum version began in
1928 with Nordheim [10], followed shortly after by Uehling and Uhlenbeck [12], who adapted the
Boltzmann equation to take Fermi-Dirac statistics into account, giving rise to the Boltzmann-Fermi-
Dirac equation.

In 1979 Danielewicz [4] used the asymptotic methods used to derive the Landau equation from
Boltzmann’s to take the limit of the Boltzmann-Fermi-Dirac equation, effectively arriving at the
Landau-Fermi-Dirac equation. The same equation, however, had already appeared in the literature
back 1970, in the works of Kadomtsev and Pogutse on the relaxation of stellar systems [8].

Once in possession of a quantum version of a classical equation, one wonders about the compati-
bility between the two. In fact, the correspondence principle of quantum mechanics states that the
behavior of quantum systems should be close to that predicted by classical mechanics in the limit
of a small Planck constant. In fact, if we formally take the limit ε → 0 in equation (4), we recover
equation (1).

In this article, we propose to show that the above procedure is rigorously justified. That is, that
solutions of the Landau-Fermi-Dirac equation converge to solutions of the Landau equation in the
limit of a small quantum parameter ε, a procedure mathematically called a semi-classical limit. More
specifically, we will prove that the LFD solutions constructed in [11] in fact converge to solutions of
the Landau equation constructed by Villani in [13], and therefore the Cauchy theories constructed
for these two equations are compatible. Furthermore, such a result also justifies the use of the LFD
equation as an approximation of the Landau equation.

A result of this type has already been shown for the Boltzmann-Fermi-Dirac equation by He, Lu
and Pulvirenti in [7], where it is shown that this equation, in its homogeneous form in space (i.e.
the distribution function f depends only on (t, v)), converges to the homogeneous Landau equation.
However, semi-classical limit results for the LFD equation are unknown to the author.

2. Preliminaries and main result

Before stating the central result, let’s briefly review the Cauchy theory for the Landau and LFD
equations. For the Landau equation one can show that formally

(5)
d

dt

¨
f(t)φdxdv = 0

if φ = 1, vi, |v|2 or |x − vt|2, which physically corresponds to the conservation of mass, linear
momentum, kinetic energy and moment of inertia, respectively. On the other hand, if we define
the entropy

(6) H(t) =

¨
f log fdxdv,

we have that, formally, if f is a solution of (1), then the functional H(t) is decreasing.
Thus, it is reasonable to assume that these quantities are bounded at the time t = 0, i.e,

(7)
¨

f0(1 + |x|2 + |v|2 + log f0) dxdv <∞

for a given initial f0, and so ideally we would like to construct a solution that obeys the conservation
laws and entropy decay. In particular, if we had such a solution, then the quantity

sup
t>0

¨
f(t)(1 + |x|2 + |v|2 + log f(t)) dxdv

would be bounded by (7), and so we look for our solution in the space of functions such that this
quantity is finite.
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Here the singularity of the collision kernel comes into play. Indeed, if we consider this kernel
for a Coulomb-type potential, the above bounds do not guarantee that the collision integral on the
right-hand side of (1) is well-defined, even in the sense of the distributions. One way to get a sense
of the solution even with this limitation is to consider renormalized solutions.

Formally, the renormalization process is a change in the unknown of the equation. Instead of
solving the Landau equation for f , we will choose a smooth, bounded function β and try to solve
the equation for g = β(f). Since the β function is bounded, ideally we get an unknown g that we
know is a bounded function a priori, which can help smooth out the product of singularities.

So let β = β(t) be a smooth function, called non-linearity. Multiplying the Landau equation by
β′(f), we get

∂β(f)

∂t
+ v · ∇xβ(f) = β′(f)

∂

∂vi

{
aij

∂f

∂vj
− bif

}
,

where aij = aij ∗v f and bi =
∂aij
∂vj

. We can rewrite this equation as

(8)
∂β(f)

∂t
+ v · ∇xβ(f) =

∂

∂vi

{
aij

∂β(f)

∂vj
− biβ(f)

}
− β′′(f)aij

∂f

∂vi

∂f

∂vj
+ c[β(f)− β′(f)f ],

where c =
∂2aij
∂vi∂vj

, and we say that f is a renormalized solution of the Landau equation if the
distribution β(f) solves (8) in the sense of distributions.

In order to tackle the Coulomb case, we assume throughout the paper that in Landau equation
we have the a(z) of the form (2), that the cross-section Γ satisfies

(9) ∀R > 0 there exists a KR > 0 such that Γ(|z|) ≥ KR, ∀|z| ≤ R,

and that is has the integrability

(10) Γ(|z|) ∈ Lr(RN ) + L∞(RN ),

for some r > N
N−1 .

The typical strategy for constructing solutions to this type of equation is to take solutions to
a well-chosen approximate equation, whose Cauchy problem is easier to study, and then prove a
compactness theorem for the solutions, enabling us to pass this equation to the limit.

For the Landau equation, such a compactness theorem was obtained by Lions in [9]. However,
as shown by Villani in [13], in the passage to the limit of the quadratic term in the derivatives ∂f

∂vi
imposes problems and a defect measure appears, giving rise to an even weaker notion of solution.

Let us then notate L1
2(R2N

x,v) the space of functions g such that¨
R2N

x,v

|g(x, v)|(1 + |x|2 + |v|2) dxdv <∞.

The existence result from [13] then reads

Definition 1. Let f0 ∈ L1
2(R2N

x,v) be such that f0 ≥ 0 and for every δ > 0, let βδ(t) = t
1+δt . We

say that f ∈ C((0,∞);D′(R2N
x,v)) ∩ L∞((0,∞);L1

2(R2N
x,v)) is a renormalized solution of the Landau

equation with defect measure and initial data f0 if, for every δ > 0, there exists a nonnegative
measure µδ, bounded on all sets (0, T )× RNx ×BR, T <∞, such that βδ(f) satisfies

(11)
∂βδ(f)

∂t
+ v · ∇xβδ(f) =

∂

∂vi

{
aij

∂βδ(f)

∂vj
− biβδ(f)

}
− β′′(f)aij

∂f

∂vi

∂f

∂vj
+ c[βδ(f)− β′

δ(f)f ] + µδ

in D′((0,∞)× R2N
x,v), f(t) → f0 as t→ 0+ in D′(R2N

x,v) and we have
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1) Conservation of mass and linear momentum:¨
f(t, x, v) dxdv =

¨
f0(x, v) dxdv,

¨
f(t, x, v)vi dxdv =

¨
f0(x, v)vi dxdv ∀i ∈ {1, · · · , N}.

2) Decay of kinetic energy and moment of inertia:¨
f(t, x, v)|v|2 dxdv ≤

¨
f0(x, v)|v|2 dxdv,

¨
f(t, x, v)|x− tv|2 dxdv ≤

¨
f0(x, v)|x− tv|2 dxdv.

3) Entropy inequality:¨
f(t, x, v) log f(t, x, v) dxdv +

ˆ t

0

¨
d(τ, x, v) dxdvdτ ≤

¨
f0(x, v) log f0(x, v) dxdv,

where

(12) d(t, x, v) =

ˆ
a(v − v∗)ff∗

∣∣∣∣∇vf

f
− ∇v∗f∗

f∗

∣∣∣∣⊗2

dv∗,

is the entropy dissipation.

More precisely, a renormalized solution with defect measure of the Landau equation satisfies, for
every φ ∈ C∞

c ([0,∞)× R2N
x,v),

−
ˆ
txv

βδ(f)
∂φ

∂t
−
ˆ
txv

βδ(f)v · ∇xφ =

ˆ
txv

aijβδ(f)
∂2φ

∂vi∂vj

+

ˆ
txv

[
∂aij
∂vj

βδ(f) + biβδ(f)

]
∂φ

∂vi
+

ˆ
txv

aij
∂γδ(f)

∂vi

∂γδ(f)

∂vj
φ

+

ˆ
txv

c[βδ(f)− fβ′
δ(f)]φ+

ˆ
txv

φdµ

and we also have, for every ψ ∈ D(RNx × RNv ),ˆ
xv

f(t)ψ
t→0+−−−−→

ˆ
xv

f0ψ.

Some nuances of the above definition are worth highlighting. Note that while the equation on
(0,∞) × R2N

x,v is stated for βδ(f), the statement of the initial condition rests solely on the function
f , without renormalization. In addition, some terms in the above statement are not well defined or
do not have a canonical definition.

Remark 1. In equation (11), since we have no regularity for the derivatives of f , the term aij
∂βδ(f)
∂vj

must be interpreted as ∂
∂vj

[aijβδ(f)]− ∂aij
∂vj

βδ(f), in the sense of distributions.

Remark 2. Since we don’t suppose any regularity upon renormalized solutions, one might ask what
the definition of the quadratic term −β′′(f)aij

∂f
∂vi

∂f
∂vj

in the sense of distributions is. In fact, this
should be viewed as a notation for

(13)
ˆ
v∗

∣∣∣√a(v − v∗)
√
f∗∇vγδ(f)

∣∣∣2 ,
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where inside the square we have an L2
loc((0,∞) × R2N

x,v) function, which is defined in the sense of
distributions as√

a(v − v∗)
√
f∗∇vγδ(f) = divv

[√
a(v − v∗)

√
f∗γδ(f)

]
− divv

[√
a(v − v∗)

]√
f∗γδ(f)

This way, the term −β′′(f)aij
∂f
∂vi

∂f
∂vj

is an L1((0,∞)×R2N
x,v) function, independent of the sequence

of approximating functions (fn)n. However, we cannot interpret this immediately as a pointwise
product of functions, and this term should rather be seen as a "black box".

Remark 3. In the same vein as the definition of the quadratic term above, the entropy dissipation
(12) should be interpreted as the L2((0,∞)× R2N

x,v) norm of the function

divv

(√
a(v − v∗)

√
f
√
f∗

)
− divv

(√
a(v − v∗)

)√
f
√
f∗

− divv∗

(√
a(v − v∗)

√
f
√
f∗

)
+ divv∗

(√
a(v − v∗)

)√
f
√
f∗.

For the Landau-Fermi-Dirac (LFD) equation, we have the same conservation laws (5) of mass,
momentum, kinetic energy and moment of inertia. However, the saturation effect described by the
Pauli exclusion principle leads us to consider, instead of (6), the quantum entropy

(14) Sε(g) = −1

ε

ˆ
xv

εg log(εg) + (1− εg) log(1− εg),

which is a decreasing functional in the solutions of the Landau-Fermi-Dirac equation (4).
For the quantum case, the extra bound (3) implies that the collision kernel is well defined even

in the case of a Coulomb-type potential. Thus, we don’t need renomalization to show the existence
of a global solution and we can construct a weak solution, in the sense of distributions, without any
problems.

This way, the existence result from [11] reads

Definition 2. Let f0 ∈ L1
2(R2N

x,v) be such that 0 ≤ f0 ≤ ε−1. A function f = f(t, x, v) in
C((0,∞);D′(R2N

x,v)) ∩ L∞((0,∞);L1
2(R2N

x,v) is called a global weak solution of LFD with initial data
f0 and quantum parameter ε > 0 if it satisfies

∂f

∂t
+ v · ∇xf =

∂2(aijf)

∂vi∂vj
+

∂

∂vi

[
∂aij
∂vj

f + bif(1− εf)

]
in D′((0,∞)× R2N

x,v), f(t) → f0 in D′(R2N
x,v) and moreover

1) Pauli exclusion principle:
0 ≤ f(t) ≤ ε−1.

2) Conservation of mass and linear momentum:¨
f(t, x, v) dxdv =

¨
f0(x, v) dxdv,

¨
f(t, x, v)vi dxdv =

¨
f0(x, v)vi dxdv ∀i ∈ {1, · · · , N}.

3) Decay of kinetic energy and moment of inertia:¨
f(t, x, v)|v|2 dxdv ≤

¨
f0(x, v)|v|2 dxdv,

¨
f(t, x, v)|x− tv|2 dxdv ≤

¨
f0(x, v)|x− tv|2 dxdv.
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4) Entropy inequality:¨
s(t, x, v) dxdv +

ˆ t

0

¨
d(τ, x, v) dxdvdτ ≤

¨
s(0, x, v) dxdv,

where
s(t, x, v) = εf log(εf) + (1− εf) log(1− εf)

is the quantum entropy and

(15) d(t, x, v) =

ˆ
a(v − v∗)f(1− εf)f∗(1− εf∗)

∣∣∣∣ ∇vf

f(1− εf)
− ∇v∗f∗
f∗(1− εf∗)

∣∣∣∣⊗2

dv∗,

is the quantum entropy dissipation.

More precisely, f is a global weak solution of LFD if for every test function φ ∈ D((0,∞)×RNx ×
RNv )), we haveˆ

txv

f
∂φ

∂t
+

ˆ
txv

fvi
∂φ

∂xi
= −

ˆ
txv

aijf
∂2φ

∂vi∂vj
−
ˆ
txv

[
∂aij
∂vj

f + bif(1− εf)

]
∂φ

∂vi

and for every ψ ∈ D(RNx × RNv ), we haveˆ
xv

f(t)ψ
t→0+−−−−→

ˆ
xv

f0ψ.

Remark 4. As is the case for the classical Landau equation, here the lack of regularity a priori in
v implies that one should interpret the entropy dissipation (15) in a different way. The result in
[11] proves that the entropy inequality is valid is we interpret the integral

´ t
0

˜
d(τ, x, v) dxdvdτ as

a notation for the L2((0, t)× RNx × RNv × RNv∗) norm of

divv

[√
a(v − v∗)

√
f∗(1− f∗) arcsin

√
f
]
− divv∗

[√
a(v − v∗)

√
f(1− f) arcsin

√
f∗

]
− divv

(√
a(v − v∗)

)√
f∗(1− f∗) arcsin

√
f + divv∗

(√
a(v − v∗)

)√
f(1− f) arcsin

√
f∗,

where the divergence of a matrix A is defined as divv A =
∑
j
∂Aij

∂vj
. The motivation for using the

expression (15) is that if f has some regularity in v, then the two expressions are equal.

The existence of such solutions was proven in [11] by a compactness argument reminiscent of the
work of Lions and Villani for the Landau equation. In this approach, we construct a sequence of
equations that adequately approximates the LFD equation and then deduce a compactness theorem
for its solutions, which allows us to pass to the limit in the approximations and obtain a solution to
the LFD equation.

The technique we will use to prove a semi-classical limit for solutions of LFD depends on being able
to pass from a weak formulation of this equation to a renormalized one, and therefore to manipulate
products of derivatives of these solutions. We don’t have regularity results for these solutions, but it
turns out that it’s enough to consider solutions that originate from solutions to approximate, more
regular equations, which leads us to the definition of suitable weak solutions of the LFD equation.

Definition 3. A weak solution f to the LFD is called a suitable weak solution if there exists a
sequence fm ∈ L2((0, T )× RNx ;H1(RNv )) of solutions to

(16)


∂fm
∂t

+ v · ∇xfm =
∂

∂vj

[
amij

∂fm
∂vi

− b
m

j fm(1− εfm)

]
fm|t=0 = f0,m

such that fm → f almost everywhere in (0,∞)× R2N
x,v and
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i. Convergence of the coefficients: am,divv am, b
m
,divv b

m
are L∞

loc((0, T )×R2N
x,v) functions

such that

am → a b
m → b

divv a
m → divv a divvb

m → divv b

in L1
loc((0, T )× R2N

x,v).
ii. Uniform bound: There exists a C > 0 such that, for every m ∈ N,

(17)
ˆ T

0

¨
R2N

x,v

fm(1 + |v|2 + |x− tv|2) dxdvdt ≤ C and 0 ≤ fm ≤ ε−1.

We call the sequence of approximating functions (fm)m an approximating scheme. The matrix am is
called the diffusion matrix and it is sometimes useful to explicitly state which sequence of diffusion
matrices we’re using. In this case, we say that fm → f is an approximation scheme with diffusion
(am)m.

Note that, by Vitali’s convergence theorem, the bounds (17) imply that the convergence fm → f
holds in L1

loc((0,∞);L1(R2N
x,v)). Also, the solutions constructed in [11] are suitable weak solutions

and if we had uniqueness for the weak solutions of LFD then all weak solutions are suitable.
The main theorem reads as follows

Theorem 1. Let εn → 0. For each n, let fn be a suitable solution of the LFD equation with
quantum parameter εn and initial data 0 ≤ fn0 ≤ ε−1

n . For each n, let fnm → fn be an approximating
scheme with diffusion (an,m)m.

Suppose the diffusion matrices satisfy

(18) an,m ≥ am ∗v (fnm(1− εfnm)), where am(z) = Γm(|z|)
(
I − z ⊗ z

|z|2

)
,

with Γm such that Γm(|z|) → Γ(|z|) in L1
loc(RN ) and for every R > 0 there exists some KR > 0 such

that
Γm(|z|) ≥ KR ∀|z| ≤ R.

If the sequence of initial data (fn0 )n is such that

(19)
¨

R2N
x,v

fn0 (1 + |x|2 + |v|2 + log fn0 ) dxdv →
¨

R2N
x,v

f0(1 + |x|2 + |v|2 + log f0) dxdv

then, up to a subsequence, the sequence fn converges to a renormalized solution of Landau equation
with defect measure.

Hypothesis (18) arises as a requirement of the techniques we use and also as a result of the fact
that we would like to write the quadratic term of the renormalized Landau form in the “natural”
form (13). However, this convolution structure is not essential for demonstrating most of the results
and if we are willing to offer an alternative, albeit more abstract, interpretation for the quadratic
term, we can alleviate the requirement (18), which specifies the way in which we approximate the
diffusion matrix a, in favor of a slightly more general ellipticity requirement.

Theorem 2. Let εn → 0. For each εn, let fn be a suitable solution of the LFD equation with
quantum parameter εn and initial data fn0 . For each n, let fnm → fn be an approximating scheme
with diffusion (an,m)m.
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If the diffusion matrices are such that ∂a
n,m

∂vk
∈ L∞

loc((0, T )×R2N
x,v) converges to ∂an

∂vk
in L1

loc((0, T )×
R2N
x,v), for every i, j, k = 1, . . . , N and such that for every R,R′ > 0 and η ∈ RN ,

(20) an,mij ηiηj ≥
ˆ
|v∗|≤R′

ν

[
1−

(
v − v∗
|v − v∗|

· η
|η|

)2
]
|η|2fnm,∗(1− fnm,∗) dv∗, ∀|v| ≤ R,

then we can write the quadratic term in Landau equation as

−β′′(f)aij
∂f

∂vi

∂f

∂vj
= lim inf

k→∞

∣∣Sk(a)∇vγ(f)
∣∣2 ,

where the term inside the square is an L2
loc((0, T ) × R2N

x,v) vector function, defined in the sense of
distributions as

Sk(a)∇vγ(f) ≡ divv[S
k(a)γ(f)]− divv[S

k(a)]γ(f),

and Sk is some smooth approximation of the matrix square root.

We remark that the statement (20), although very close, is a weaker requirement than (18).
The technique we will use to prove Theorems 1 and 2 consists of using the extra regularity

provided by the (fnm)n approximations to pass the equation into a renormalized form and then
study the compactness of the diagonal of the scheme

(21)

fnm fn

f

n,m

m

n

That is, show that there exists a sequence mn → ∞ such that (fnmn
)n is strongly compact in L1.

Since the approximation schemes (fnm) are always “close” to fn, we can then show the convergence of
fn “in tow” to the same limit, which we will show is a renormalized solution of the Landau equation
with defect measure.

In order to do this, in Section 3 we start by proving that any time we have such an arrangement,
there exists some diagonal that is weakly compact. We then proceed in Section 4 to show that
approximate solutions satisfy in fact a renormalized formulation of LFD, which we will use in Section
5 to prove that our diagonal is in fact strongly compact. Section 6 is then dedicated to using this
compactness to pass the renormalized formulation in the limit, thus proving Theorem 1, and finally
in Section 7 we prove Theorem 2 by studying approximations of the matrix square root.

3. Weak compactness of diagonal sequences

In the existence theory for the Boltzmann, Landau and Landau-Fermi-Dirac equations, the con-
servation laws obeyed by these equations automatically imply their solutions are weakly compact in
L1
loc((0,∞), L1(R2N

x,v)).
In our case, however, the approach needs to be slightly different, since our approximation schemes

don’t necessarily satisfy conservation laws. In fact, this is neither assumed about the schemes nor can
it be deduced from the approximating equations themselves, since we don’t even have the convolution
structure of a, b and c for these equations. Despite this, we can construct a diagonal sequence that
is weakly compact in L1, and the main result of this section then reads

Lemma 1. Let fn be a sequence of suitable weak solutions to the LFD equation (4), as in Definition
3 and for each n, consider fnm → fn an approximation scheme for fn.
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If there exists a C > 0 such that¨
R2N

x,v

fn0 (1 + |x|2 + |v|2 + log fn0 ) dxdv,≤ C

then there exists a sequence (Mn)n such that if mn ≥Mn for every n ∈ N, then the diagonal sequence
(fnmn

)n is weakly compact in L1
loc((0,∞);L1(R2N

x,v)).

Proof. The main idea is that although we don’t know if the approximate solutions obey conservation
laws, the fn solutions definitely do, so we choose a diagonal sequence fnmn

that is close enough to
the fn sequence.

Note that the uniform bound implies weak compactness in L1 by a simple application of the
Dunford-Pettis theorem.

Part I: Bounding the approximating terms by their limits
We’ll start by showing that for every T > 0 and n ∈ N there is a CT > 0 and an Mn,T > 0 such

that

(22)
ˆ T

0

ˆ
xv

fnm(1 + |v|+ |x− tv|+ | log fnm|) ≤ CT +

ˆ T

0

ˆ
xv

fn log fn

for every m ≥Mn,T .
Indeed for every n the sequence (fnm(1+|v|2+|x−tv|2))m is uniformly bounded in L1((0, T );L1(R2N

x,v))

and fnm → fn in L1((0, T );L1(R2N
x,v)), hence it follows by interpolation that

(23) fnm(1 + |v|+ |x− tv|) → fn(1 + |v|+ |x− tv|) in L1((0, T );L1(R2N
x,v)),

thus there exists some Mn,T > 0 such that
ˆ T

0

ˆ
xv

fnm(1 + |v|+ |x− tv|) ≤
ˆ T

0

ˆ
xv

fn(1 + |v|+ |x− tv|) + 1

≤ 2

ˆ T

0

ˆ
xv

fn(1 + |v|2 + |x− tv|2) + 1.

for every m ≥Mn,T . Then, since fn is a solution of (4) as in Definition 2, we have that
ˆ T

0

ˆ
xv

fn(1 + |v|2 + |x− tv|2) ≤ T

ˆ
xv

fn0 (1 + |v|2 + |x|2),

which then achieves the first part of inequality (22).
For the entropy part notice that, for any function h = h(t, x, v) we have

h| log h| = h log h− 2h log h1{h≤1}

We can bound the last term as

−h log h1{h≤1} = h log(1/h)1{h≤exp(−|x|−|v|)} + h log(1/h)1{h>exp(−|x|−|v|)}

≤ h log(1/h)1{h≤exp(−|x|−|v|)} + h(|x|+ |v|)

and since x log(1/x) ≤
√
x, for every x ≥ 0, we conclude that

−h log h1{h≤1} ≤ exp (−(|x|+ |v|)/2) + h(|x|+ |v|),

thus

(24) h| log h| ≤ 2 exp

[
−1

2

(
|x|+ |v|

)]
+ h log h+ 2h

(
|x|+ |v|

)
.
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Then choosing h(t, x′, v) = fn(t, x′ + tv, v) and letting x = x′ + tv we have that

(25) fn(t, x, v)| log fn(t, x, v)| ≤ 2 exp

[
−1

2

(
|x− tv|+ |v|

)]
+ fn(t, x, v) log fn(t, x, v)

+ 2fn(t, x, v)
(
|x− tv|+ |v|

)
.

for every (t, x, v) ∈ (0, T )× R2N
x,v. So in particular, for 0 ≤ fnm ≤ ε−1

n ,

fnm| log fnm| ≤ 2 exp

[
−1

2

(
|x− tv|+ |v|

)]
+ (2 + ε−1

n )fnm
(
1 + |x− tv|+ |v|

)
.

hence from (23) it follows that fnm| log fnm| → fn| log fn| in L1((0, T );L1(R2N
x,v)), for each n by

dominated convergence. There exists some MT such that
ˆ T

0

ˆ
xv

fnm| log fnm| ≤
ˆ T

0

ˆ
xv

fn| log fn|+ 1

for every m ≥Mn,T . Then, applying inequality (25) leads
ˆ T

0

ˆ
xv

fnm| log fnm| ≤ CN + Cm

ˆ T

0

ˆ
xv

fn log fn

which implies the inequality that we wanted.
Now, since fn is a solution of (4) as in Definition 2, we have that

ˆ T

0

ˆ
xv

fn(1 + |v|2 + |x− tv|2) ≤ T

ˆ
xv

fn0 (1 + |v|2 + |x|2),

which then proves inequality (22).

Part II: Entropy bound
We now pass to the entropy part of the proposition. A remarkable property of the functionals

(14) is that although the LFD equation (4) formally becomes the Landau equation (1) in the ε→ 0
limit, we don’t have formal convergence from the quantum entropy to the classical entropy.

Indeed, any function of the form fε(t, x, v) = ε−1
1A(x − tv, v) is a weak solution to (4) that

conserves mass and kinetic energy and is such that Sε(fε) = 0. But notice that H(fε) → ∞, which
implies that we cannot control the classical entropy of a semi-classical limit just by an uniform
control over the quantum entropies.

Thus, we see that not every semi-classical limit of LFD solutions gives rise to a physical result
with only a uniform estimate on the quantum entropy, and another estimate must then be found.
Let us then show that

(26)
ˆ
xv

fn log fn ≤
ˆ
xv

fn0 log fn0 +

ˆ
xv

fn0 .

Since 0 ≤ fn0 ≤ ε−1, we have thatˆ
xv

fn0 log fn0 ≥ 1

ε

ˆ
xv

εfn0 log fn0 + (1− εfn0 ) log(1− εfn0 )

= Sε(f
n
0 )−

ˆ
xv

fn0 log(ε)

≥ Sε(f(t))−
ˆ
xv

fn0 log(ε)
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Now, using that for every 0 ≤ x ≤ ε−1, we have
1

ε
[εx log(εx) + (1− εx) log(1− εx)] ≥ x log x+ x log ε− x,

it follows that ˆ
xv

fn0 log fn0 ≥
ˆ
xv

fn log fn +

ˆ
xv

fn log(ε)−
ˆ
xv

fn −
ˆ
xv

fn0 log(ε),

and then (26) follows from the conservation of mass of fn.

Part III: Weak compactness
Now, applying (22) together with (26) we have that for all T > 0 and n ∈ N there exists a CT > 0

and an Mn,T > 0 such that
ˆ T

0

ˆ
xv

fnm(1 + |v|+ |x− tv|+ | log fnm|) ≤ CT

for all m ≥ Mn,T , which is indeed the first part of the statement. In this final step we show that
the bound we have shown indeed implies the weak compactness from the statement.

Let Nn = maxT∈{1,...,n}Mn,T and suppose that the diagonal sequence (fnmn
)n satisfies mn ≥ Nn

for every n ∈ N. For every n ≥ 1 we have that mn ≥ Nn ≥Mn,1 hence

(27)
ˆ 1

0

ˆ
xv

fnmn
(1 + |v|2 + |x− tv|2 + | log fnmn

|) ≤ C1.

Let us write gn instead of fnmn
. The bound (27) gives us, from the Dunford-Pettis theorem, that

there exists a sequence k1(n) such that

gk1(n) ⇀ g1 in L1((0, 1)× R2N
x,v).

Next, for each n ≥ 2 we have that mn ≥ Nn ≥Mn,2 and hence
ˆ 2

0

ˆ
xv

fnmn
(1 + |v|2 + |x− tv|2 + | log fnmn

|) ≤ C2

and similarly this implies there exists a k2(n), subsequence of k1(n), such that

gk2(n) ⇀ g2 in L1((0, 2)× R2N
x,v)

and from uniqueness of the weak limit, we have that g2 = g1 a.e. in (0, 1)× R2N
x,v.

We repeat this argument, taking subsequences of subsequences to construct, for every m, a
sequence (gkm(n))n that converges weakly in L1((0,m) × R2N

x,v) to gm. As before, we have that if
N < M then gN and gM coincide in t ∈ (0, N). Thus, if we consider

g =

∞∑
n=1

gn1[n−1,n)(t),

then gN is the restriction of g to (0, N).
The diagonal sequence gkn(n) converges to g weakly in L1

loc((0,∞);L1(R2N
x,v)). Indeed, for every

T > 0, let N > T . By construction, the sequence gkn(n) is a subsequence of gkN (n), for n > N , thus
it converges to gN in (0, N) and in particular it converges to g in (0, T ).

We then relabel the diagonal sequence kn(n) simply as n and we have, to summarize,

fnmn
⇀ g in L1

loc((0,∞);L1(R2N
x,v)).

□
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4. From weak to renormalized solutions

A crucial step in the proof of Theorem 1 consists to find a renormalized formulation for the LFD
equation, which we will later pass to the limit by making the quantum parameter tend to zero. So
far it is not known whether weak solutions of the LFD are also renormalized solutions (and in what
sense these renormalized solutions would be defined), so in this section we will show that if we had
a little more regularity in the variable v, then weak solutions are renormalized and vice versa.

Proposition 1. Suppose g ∈ L2
loc((0,∞) × RNx ;H1

loc(RNv )) ∩ L∞((0,∞) × R2N
x,v), let βδ(t) ≡ t

1+δt

and Aij , Bi, ∂Bi

∂vi
∈ L∞

loc. Thus, g is a solution to

(28)
∂g

∂t
+ vi

∂g

∂xi
=

∂

∂vj

{
Aij

∂g

∂vi
−Big(1− εg)

}
in D′((0,∞)× R2N

x,v) if and only if βδ(g) is a solution to

(29)
∂βδ(g)

∂t
+ v · ∇xβδ(g) =

∂

∂vi

{
Aij

∂βδ(g)

∂vj
−Bi(1− 2εg)βδ(g)− 2εBiBδ(g)

}
− β′′

δ (g)Aij
∂g

∂vi

∂g

∂vj
− C [g(1− εg)β′

δ(g)− (1− 2εg)βδ(g)− 2εBδ(g)]

in D′((0,∞)× R2N
x,v), where C =

∑
i
∂Bi

∂vi
and Bδ(x) =

´ x
0
βδ(t) dt.

Proof. We begin with the direct implication. The formal procedure consists of multiplying both
sides of the equation by β′

δ and then rewriting the derivatives in the appropriate form, using the
product rule. However, due to the low regularity of g (particularly with respect to the variables t
and x), we cannot justify this procedure directly.

To overcome this, take ρ to be a C∞(R2N
x,v) function with support in (−1, 0)×Bx(0, 1) and define

the mollifying sequence

ρm(t, x) =
1

mN+1
ρ

(
t

m
,
x

m

)
.

Fix t > 0 and x ∈ RNx and consider a test function φ = φ(v) in C∞
c (RNv ). Testing equation (28)

against

Ψt,x =

{
Rt × RNx → R
(s, y) 7→ ρm(t− s, x− y)φ(v)

leads

−
ˆ ∞

0

¨
g(s, y, v)

(
∂ρm
∂t

+ vi
∂ρm
∂xi

)
(t− s, x− y, v)φ(v) dydvds

=

ˆ ∞

0

¨ [
Aij

∂g

∂vj
−Big(1− εg)

]
(s, y, v)ρm(t− s, x− y)

∂φ

∂vi
(v) dydvds,

which are convolutions (in the variables t and x) with ρm. Here it will be useful to establish a
notation for the rest of the proof. For any distribution T , let’s note Tm the convolution

Tm ≡ T ∗t,x ρm.



14 PAULO SAMPAIO

This way, we rewrite the above expression as

−
ˆ
∂gm
∂t

(t, x, v)φ(v) dv −
ˆ
vi
∂gm
∂xi

(t, x, v)φ(v) dv

=

ˆ [
Aij

∂g

∂vj
−Big(1− εg)

]
m

(t, x, v)
∂φ

∂vi
(v) dv,

for every t > 0 and x ∈ RNx .
Let φ ∈ C∞

c ((0,∞)× R2N
x,v), taking v 7→ φ(t, x, v) as a test function in the expression above and

integrating in (t, x) ∈ (0,+∞)× RN we obtain

−
ˆ
txv

∂gm
∂t

φ−
ˆ
txv

vi
∂gm
∂xi

φ =

ˆ
txv

[
Aij

∂g

∂vj
−Big(1− εg)

]
m

∂φ

∂vi
,

where we have used the notation
´
txv

to denote
´∞
0

´
xv

dt.
Now let χk be a mollifying sequence in all three variables (t, x, v), with support in (−1, 0) ×

Bx(0, 1)×Bv(0, 1). Taking (β′(gm) ∗ χk)φ as a test function in the equation above, we have

(30) −
ˆ
txv

∂gm
∂t

(β′(gm) ∗ χk)φ−
ˆ
txv

vi
∂gm
∂xi

(β′(gm) ∗ χk)φ

=

ˆ
txv

[
Aij

∂g

∂vj
−Big(1− εg)

]
m

∂[(β′(gm) ∗ χk)φ]
∂vi

.

We start by passing this equation to the limit k → ∞. To lighten the notation, for the rest of
this proof, let us simply note Lploc for Lploc((0,∞)×R2N

x,v). Since |β′(gm)| ≤ 1, we have, by standard
convolution results,

∂gm
∂t

(β′(gm) ∗ χk)
k→∞−−−−→ ∂gm

∂t
β′(gm) =

∂β(gm)

∂t

vi
∂gm
∂xi

(β′(gm) ∗ χk)
k→∞−−−−→ vi

∂gm
∂xi

β′(gm) = vi
∂β(gm)

∂xi

in Lploc, for every 1 ≤ p <∞, hence the left-hand side of (30) converges to

−
ˆ
txv

∂β(gm)

∂t
φ−
ˆ
txv

vi
∂β(gm)

∂xi
φ =

ˆ
txv

β(gm)
∂φ

∂t
+

ˆ
txv

β(gm)vi
∂φ

∂xi
,

after integration by parts. For the right-hand side of (30), consider
∂[(β′(gm) ∗ χk)φ]

∂vi
=

[(
β′′(gm)

∂gm
∂vi

)
∗ χk

]
φ+ (β′(gm) ∗ χk)

∂φ

∂vi
.

Using that β′′(gm)∂gm∂vi and β′(gm) are in L2
loc, the above expression converges to

β′′(gm)
∂gm
∂vi

φ+ β′(gm)
∂φ

∂vi

in L2
loc and is compactly supported. Since

[
Aij

∂g
∂vj

−Big(1− εg)
]
m

∈ L2
loc, passing (30) to the limit

k → ∞ gives

(31)
ˆ
txv

β(gm)
∂φ

∂t
+

ˆ
txv

β(gm)vi
∂φ

∂xi

=

ˆ
txv

[
Aij

∂g

∂vj
−Big(1− εg)

]
m

(
β′′(gm)

∂gm
∂vi

φ+ β′(gm)
∂φ

∂vi

)
,

and it remains to pass this equation to the limit m→ ∞.
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The left-hand side of (31) converges to
ˆ
txv

β(g)
∂φ

∂t
+

ˆ
txv

β(g)vi
∂φ

∂xi

since gm → g almost everywhere and |β(gm)| ≤ C. For the integral
ˆ
txv

[
Aij

∂g

∂vj

]
m

(
β′′(gm)

∂gm
∂vi

φ+ β′(gm)
∂φ

∂vi

)
,

we have that
[
Aij

∂g
∂vj

]
m

→ Aij
∂g
∂vj

in L2
loc. Passing to a subsequence, if necessary, we have that ∂gm

∂vi

is dominated by an L2 function. Since β′′ is bounded, we conclude by dominated convergence that[
Aij

∂g

∂vj

]
m

β′′(gm)
∂gm
∂vi

→ β′′(g)Aij
∂g

∂vi

∂g

∂vj

and [
Aij

∂g

∂vj

]
m

β′(gm) → Aij
∂g

∂vj
β′(g) = Aij

∂β(g)

∂vj

in L1
loc, thus the above integrals converge to

ˆ
txv

β′′(g)Aij
∂g

∂vi

∂g

∂vj
φ+

ˆ
txv

Aij
∂β(g)

∂vj

∂φ

∂vi

and similarly, one can prove that
ˆ
txv

[
Big(1− εg)

]
m

(
β′′(gm)

∂gm
∂vi

φ+ β′(gm)
∂φ

∂vi

)
→
ˆ
txv

Big(1− εg)

(
β′′(g)

∂g

∂vi
φ+ β′(g)

∂φ

∂vi

)
.

However, the limit distribution we have above is not yet in the same form as that found in
equation (29). Consider then (gn)n a sequence of C∞

c ((0,∞)× R2N
x,v) functions such that gn → g in

L2
loc((0,∞)× RNx ;H1

loc(RNv )). For each n, notice we have

β′(gn)
∂

∂vi

[
Bign(1− εgn)

]
=

∂

∂vi

[
Bi(1− 2εgn)β(gn) + 2εBiB(gn)

]
+

C [gn(1− εgn)β
′(gn)− (1− 2εgn)β(gn)− 2εB(gn)] ,

but also

β′(gn)
∂

∂vi

[
Bign(1− εgn)

]
=

∂

∂vi

[
Bign(1− εgn)β

′(gn)
]
−Bign(1− εgn)β

′′(gn)
∂gn
∂vi

,

so passing both sides to the limit in the sense of distributions we conclude that

−
ˆ
txv

Big(1− εg)

(
β′′(g)

∂g

∂vi
φ+ β′(g)

∂φ

∂vi

)
= −
ˆ
txv

[
Bi(1− 2εg)β(g) + 2εBiB(g)

] ∂φ
∂vi

+

ˆ
txv

C [g(1− εg)β′(g)− (1− 2εg)β(g)− 2εB(g)]φ,
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for every φ ∈ C∞
c ((0,∞)× R2N

x,v) and therefore

−
ˆ
txv

βδ(g)
∂φ

∂t
−
ˆ
txv

βδ(g)v · ∇xφ =

ˆ
txv

Aijβδ(g)
∂2φ

∂vi∂vj

+

ˆ
txv

[
∂Aij
∂vj

βδ(g) +Bi(1− 2εg)βδ(g) + 2εBiB(g)

]
∂φ

∂vi
−
ˆ
txv

β′′
δ (g)Aij

∂g

∂vi

∂g

∂vj
φ

+

ˆ
txv

C [g(1− εg)β′
δ(g)− (1− 2εg)βδ(g)− 2εB(g)]φ

for every φ ∈ C∞
c ((0,∞)× R2N

x,v).
For the reverse implication, if g satisfies the above equation for every δ > 0, taking δn = 1/n→ 0

and notating βn for βδn we have that, almost everywhere,

βn(g) → g, β′
n(g) → 1, β′′

n(g) → 0

and from dominated convergence, Bn(g) → g2/2 a.e. This implies, given that g ∈ L∞, that the
left-hand side converges to

−
ˆ
txv

g
∂φ

∂t
−
ˆ
txv

gv · ∇xφ.

For the right-hand side we have that,

Aijβn(g) → Aijg

∂Aij
∂vj

βn(g) +Bi(1− 2εg)g + 2εBiB(g) → ∂Aij
∂vj

g +Bi(1− εg)g

β′′
n(g)Aij

∂g

∂vi

∂g

∂vj
→ 0

C [g(1− εg)β′
n(g)− (1− 2εg)βn(g)− 2εB(g)] → 0

almost everywhere, but since |βn(g)| ≤ g, |β′
n(g)| ≤ 1, |β′′

n(g)| ≤ 2, |Bn(g)| ≤ g2/2 and g ∈
L∞((0,∞)× R2N

x,v), these convergences actually hold in L1
loc. □

An immediate corollary of the above result is that although we don’t know whether weak LFD
solutions are also renormalized solutions, the solutions in an approximation scheme definitely are.

Lemma 2. Let f be a suitable solution of LFD, with fm → f an approximating scheme, as in
Definition 3. Then, taking βδ(t) = t

1+δt we have, for each n,

(32)
∂βδ(fm)

∂t
+ v · ∇xβδ(fm) =

∂

∂vi

{
amij

∂βδ(fm)

∂vj
− b

m

i (1− 2εfm)βδ(fm)− 2εb
m

i Bδ(fm)

}
− β′′

δ (fm)amij
∂fm
∂vi

∂fm
∂vj

− cm [fm(1− εfm)β′
δ(fm)− (1− 2εfm)βδ(fm)− 2εBδ(fm)]

in D′([0, T ]× R2N
x,v), where am and b

m
are the same as in equation (16) and cm =

∂b
m
i

∂vi
.

5. Diagonal compactness of approximating schemes

The existence results for the Landau equation in [13] and Landau-Fermi-Dirac in [11] are, in
essence, compactness results for approximation schemes. For example, for the Landau-Fermi-Dirac
equation, it is shown that a sequence of solutions in L2

loc((0,∞);L2(RNx ;H1(RNv ))) to an approximate
equation is strongly compact in L1

loc((0,∞);L1(R2N
x,v)), which allows us to pass the approximate

equation to the limit.
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The idea then is to take advantage of this compactness of the approximation schemes to extract
the compactness we want for a semi-classical limit. However, since the LFD existence theorem is
proved for a fixed quantum parameter, we can’t use it directly for a semi-classical limit.

Consider then a sequence of vanishing quantum parameters, δn → 0 and, for each n, let fn be
a suitable solution of LFD, with fnm → fn being an approximation scheme for this solution. We
want to prove that the diagonal of the diagram (21) is strongly compact, that is, given a sequence
mn → ∞, the sequence of approximate solutions (fnmn

)n is strongly compact in L1. Once this
diagonal has been established, we can choose fnm closer and closer to fn, and in the end we will have
that the fn converge “in tow”, culminating in

Lemma 3. Let (fn) be a sequence of suitable weak solutions to (4). For each n, consider an
approximating scheme fnm → fn satisfying (20). If the diagonal sequence (fnmn

)n is weakly compact
in L1

loc((0,∞)× R2N
x,v) and

an,mn , divv a
n,mn , b

n,mn
, cn,mn

are bounded sequences in L1
loc((0,∞)×R2N

x,v), then (fnmn
)n is strongly compact in L1

loc((0,∞)×R2N
x,v).

The outline of the proof of Lemma 3 is very reminiscent of the proof of the existence of weak
solutions to the LFD equation. First, we prove the compactness of velocity averages of the solution
sequence, which gives us compactness in the t and x variables. Then we study the parabolic part of
the equation in order to get compactness in the v variable and finally a proposition will allow us to
join the two results and get full compactness in L1 for these solutions.

5.1. Velocity Averaging. In the study of transport equations, the averaging lemmas constitute a
whole body of results stating roughly that, if f is a solution to a transport equation ∂tf +v ·∇f = g
such that f and g are bounded in L2, for example, then the velocity averageˆ

fφ dv

should be bounded in a more regular space (in the above example, it is bounded in H1/2). Hence
for a bounded sequence of solutions fn then, we expect the velocity averages to be compact in L2.

First shown independently by Agoshkov [2] and Golse, Perthame and Sentis in [6] in an L2 setting,
averaging lemmas are now a standard technique in the study of kinetic equations. The version we’ll
use here is a simple corollary of Theorem 1.1.8 of [3], which reads

Theorem 3. Let Ω be an open set of Rt×RNx , (fn)n a sequence of functions bounded in Lploc(Ω×RM ),
with p > 1, verifying

∂tfn + v · ∇xfn =
∑

|α|≤m

∂αv g
(α)
n in Ω× RM

for some m ∈ N, where (g
(α)
n )n is a bounded sequence in the space of measures Mloc(Ω × RM ) for

each |α| ≤ m. For any ψ ∈ C∞
c (RM ), consider the velocity averages

ρnψ(t, x) =

ˆ
fn(t, x, v)ψ(v) dv.

Then, the sequence (ρnψ)n is compact in Lqloc(Ω) for any q < p.

In order to apply this theorem to the renormalized equation (32) we have deduced in the last
section, we first show an estimate for the quadratic term in the derivatives on the right-hand side
of this equation.
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Lemma 4. Let (fn) be a sequence of suitable weak solutions to (4). For each n, consider an
approximating scheme fnm → fn, as in Definition 3. If the sequences

an,mn , divv a
n,mn , b

n,mn
, cn,mn

are uniformly bounded in L1
loc((0,∞)× R2N

x,v) then for every T,R > 0,
˚

(0,T )×BR×BR

an,mn

ij

∂β(fnmn
)

∂vi

∂β(fnmn
)

∂vj
dtdxdv ≤ CT,R

where CT,R > 0 is a universal constant, which doesn’t depend on n and β(t) = t
1+t .

Proof. In equation (32), choose β(t) = t
1+t as non-linearity and φ ≥ 0 such that φ ≡ 1 in (0, T ) ×

BR ×BR as a test function. This way, we have, since β′′(t) = − 2
(1+t)3

2

ˆ
txv

an,mij
1

(1 + fnm)3
∂fnm
∂vi

∂fnm
∂vj

φ ≤
∣∣∣∣ˆ
xv

β(fnm)(0)φ(0)

∣∣∣∣+ ∣∣∣∣ˆ
txv

β(fnm)
∂φ

∂t

∣∣∣∣
+

∣∣∣∣ˆ
txv

β(fnm)v · ∇xφ

∣∣∣∣+ ∣∣∣∣ˆ
txv

an,mij β(fnm)
∂2φ

∂vi∂vj

∣∣∣∣
+

∣∣∣∣∣
ˆ
txv

[
∂an,mij
∂vj

β(fnm) + b
m,n

i (1− 2εnf
n
m)β(fnm) + 2εnb

m,n
B(fnm)

]
∂φ

∂vi

∣∣∣∣∣
+

∣∣∣∣ˆ
txv

cn,m [fnm(1− εnf
n
m)β′(fnm)− (1− 2εnf

n
m)β(fnm)− 2εnB(fnm)]φ

∣∣∣∣ .
Since |β(t)| ≤ 1, the first four terms in the right-hand side are bounded by

∥φ(0)∥L1
xv

+

∥∥∥∥∂φ∂t
∥∥∥∥
L1

txv

+ ∥v · ∇xφ∥L1
txv

+
∥∥an,mij ∥∥

L1(suppφ)

∥∥∥∥ ∂2φ

∂vi∂vj

∥∥∥∥
L∞

.

Now, since 0 ≤ fnm ≤ ε−1
n we have |1− 2εnf

n
m| ≤ 1 and for this β,

|εnB(fnm)| = εn(f
n
m − log(1 + fnm)) ≤ εnf

n
m ≤ 1

hence, the fifth term is bounded by(
∥divv an,m∥L1(suppφ) + 2

∥∥bn,mi ∥∥
L1(suppφ)

)
∥φ∥L∞ .

Finally, using that 0 ≤ tβ′(t) = t
(1+t)2 ≤ 1 for t ≥ 0 and |1− εnf

n
m| ≤ 1, we bound the last term

by
4
∥∥cn,m∥∥

L1(suppφ)
∥φ∥L∞ .

The result then follows since (β′(t))2 = 1
(1+t)4 ≤ 1

(1+t)3 . □

We could use Lemma 4 directly, together with the estimates we have for the fn solutions, to
deduce the compactness of the velocity averages of β(fn). However, as in the proof for the existence
of global solutions to the LFD equation, it turns out that the quantity we must prove compactness
for the velocity averages is fn(1 − εnf

n). We therefore need to do some extra work to get the
compactness from one to the other.

Lemma 5. Let εn → 0 be a vanishing sequence of quantum parameters and for each n let fn be a
suitable solution of LFD with quantum parameter εn, with fnm → fn an approximating scheme, as
in Definition 3. Define Fnm ≡ fnm(1− εnf

n
m).
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Let mn → ∞ be such that (fnmn
)n is weakly compact in L1

loc((0,∞);L1(R2N
x,v)), then the velocity

averages ˆ
Fnmn

φ dv and
ˆ
βδ(f

n
mn

)φ dv

are compact in L1
loc((0,∞)× RNx ), for every φ ∈ C∞

c (RNv ).

Proof. Throughout this proof, we will notate the sequence fnmn
as fn, as well as the coefficients anm,

b
n

m and cnm as an, b
n

and cn, respectively.
This proof is divided into three parts. First, we will show the compactness of the velocity averages

of βδ(fn), using the renormalized formulation. We then proceed by showing that the velocity
averages of βδ(fn) converge to the same limit as the velocity averages of βδ(Fn) and finally we relax
the value of δ > 0 to achieve compactness for the velocity averages of Fn.

Part I: Velocity averages of βδ(fn)
Equation (32) can be rewritten as

∂βδ(f
n)

∂t
+ v · ∇xβδ(f

n) =
∂2Gnij
∂vi∂vj

− ∂Gni
∂vi

+Gn

where the functions in the right-hand side are given by

Gnij = anijβδ(f
n)

Gni =
∂anij
∂vj

βδ(f
n) + b

n

i (1− 2εnf
n)βδ(f

n) + 2εnb
n

i Bδ(f
n)

Gn = −cn [fn(1− εnf
n)β′

δ(f
n)− (1− 2εnf

n)βδ(f
n)− 2εnBδ(f

n)]− β′′
δ (f

n)anij
∂fn

∂vi

∂fn

∂vj

Now, since βδ(t) ≤ δ−1, |1− 2εnf
n| ≤ 1 and

|εnBδ(fn)| = εn

(
fn

δ
− log(δfn + 1)

δ2

)
≤ εnδ

−1fn ≤ δ−1,

it follows that the first two functions satisfy

|Gnij | ≤ δ−1|anij | and |Gni | ≤ δ−1

∣∣∣∣∂anij∂vj

∣∣∣∣+ 3δ−1|bni |

and thus these sequences are bounded in L1
loc((0,∞) × RNx ). Moreover, since tβ′

δ(t) =
t

(1+δt)2 ≤ 1
δ ,

it follows that
|Gn| ≤ 4

δ
|cn| − β′′

δ (f
n)anij

∂fn

∂vi

∂fn

∂vj

and from Lemma 4, this sequence is bounded in L1
loc((0,∞) × R2N

x,v). Since (βδ(f
n))n is bounded

in L∞((0,∞) × R2N
x,v), Theorem 3 implies that the velocity averages

´
βδ(f

n)φdv are compact in
L1
loc((0,∞)× R2N

x,v). We then pass to a convergent subsequence.

Part II: Velocity averages of β(Fn)
The next part of the proof consists of passing from the compactness of the β(fn) averages to the

compactness of the β(Fn) averages. Notice that

|βδ(Fn)− βδ(f
n)| = εnf

n fn

1 + δfn
1

1 + δFn
≤ δ−1εnf

n

and thus we may estimate the difference of norms asˆ
tx

∣∣∣∣ˆ
v

β(Fn)φ−
ˆ
v

β(fn)φ

∣∣∣∣ ≤ ˆ
txv

δ−1εnf
n|φ| ≤ δ−1εn∥φ∥L∞

v
∥fn∥L1

txv
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and since ∥fn∥L1
txv

≤ C, the above quantity converges to zero as n→ ∞. Since the velocity averages
of βδ(fn) are compact, the above argument not only shows that the velocity averages of βδ(Fn) are
also compact, but that the two limits coincide.

Part III: Velocity averages of Fn

In this last step, we will use the fact that the δ > 0 taken so far is arbitrary to obtain the
compactness of the averages of Fn. We have, for any K > 1,

|βδ(Fn)− Fn| = δ(Fn)2

1 + δFn
=

δ(Fn)2

1 + δFn
1Fn≤K +

δ(Fn)2

1 + δFn
1Fn>K .

Using that t 7→ t
1+δt is an increasing function bounded by 1/δ and that Fn = fn(1 − εnf

n) ≤ fn,
it follows that

|βδ(Fn)− Fn| ≤ K

1 + δK
δFn1Fn≤K + Fn1Fn>K

≤ Kδfn + fn1fn>K

and therefore ˆ
tx

∣∣∣∣ˆ
v

βδ(F
n)φ−

ˆ
v

Fnφ

∣∣∣∣ ≤ Kδ∥φ∥L∞
v

ˆ
txv

fn + ∥φ∥L∞
v

ˆ
txv

fn1fn>K .

But since (fn)n is uniformly integrable, for every ε > 0 there exists some Kε > 0 such that

sup
n

ˆ
txv

fn1fn>Kε
≤ ε.

This way, there exists a C = C(T, φ) > 0 such that for every δ ≤ ε/Kε,∥∥∥∥ˆ
v

βδ(F
n)φ−

ˆ
v

Fnφ

∥∥∥∥
L1

≤ C(T, φ)ε, ∀n ∈ N.

For each m ∈ N, let δm > 0 be such that∥∥∥∥ˆ
v

βδm(Fn)φ−
ˆ
v

Fnφ

∥∥∥∥
L1

≤ 1

m
,

for every n ∈ N. Since the velocity averages for βδ(fn) are compact we conclude that, for each m,
the average

´
v
βδm(Fn)φ will converge, up to a subsequence. Let us notate ρnm =

´
v
βδm(Fn)φ. We

will use a diagonal argument to construct a single subsequence that converges for every m.
We have (ρn1 )n compact, thus there exists some sequence k1(n) such that (ρ

k1(n)
1 )n converges.

Next, since (ρ
k1(n)
2 )n compact, we take a k2 subsequence of k1 such that (ρ

k2(n)
2 )n converges and so

on.
This way, we construct nested sequences km such that (ρ

km(n)
ℓ )n converges, for every ℓ ≤ m.

Consider the diagonal sequence (kn(n))n. By definition, from index ℓ on, this is a subsequence of
(kℓ(n))n, and thus (ρ

kn(n)
ℓ )n converges for every ℓ ∈ N.

We then pass to this subsequence, notating simply Fn instead of Fφn(n). For every n,m ∈ N, we
have ∥∥∥∥ˆ

v

Fnφ−
ˆ
v

Fmφ

∥∥∥∥
L1

≤
∥∥∥∥ˆ

v

Fnφ−
ˆ
v

βδk(F
n)φ

∥∥∥∥
L1

+

∥∥∥∥ˆ
v

βδk(F
n)φ−

ˆ
v

βδk(F
m)φ

∥∥∥∥
L1

+

∥∥∥∥ˆ
v

βδk(F
m)φ−

ˆ
v

Fmφ

∥∥∥∥
L1

≤ 2

k
+

∥∥∥∥ˆ
v

βδk(F
n)φ−

ˆ
v

βδk(F
m)φ

∥∥∥∥
L1
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and since (
´
βδk(F

n)φdv)n is a Cauchy sequence in L1, we have that (
´
Fnφdv)n is also a Cauchy

sequence, and thus converges. □

5.2. Almost everywhere compactness. Once we have found some compactness in the variables
t and x through velocity averaging, the aim now is to find compactness in the variable v.

The traditional way of doing this, widely used in the study of parabolic equations, is to search
for an ellipticity estimate for the diffusion matrices anij that is uniform in n, which together with
Lemma 4 would give us a bound on the derivatives of f . Such an estimate. however, would fall
apart if we had, for example,

´
v
fn(1 − εnf

n) = 0 at some (t, x), as this implies an(t, x, v) = 0 at
that point. Thus, this estimate depends primarily on the fact that we don’t have a quantum vacuum
at any (t, x), which seems to us to be a very difficult estimate to achieve.

But it turns out that such an elliptic estimate is not necessary, and we obtain sufficient compact-
ness in v using only a partial notion of ellipticity satisfied by a, namely Lemma 2 of [11], which is
rewritten, for our case, as

Lemma 6. Fix T,R > 0. Define Fnm ≡ fnm(1− εnf
n
m). Suppose there exists some F ∈ L∞((0,∞)×

R2N
x,v) ∩ L1

loc((0,∞);L1(R2N
x,v)) such that
ˆ
Fnmn

φdv →
ˆ
Fφdv in L1([0, T ]×BR)

for every φ ∈ L1(RNv ). Let an,m be a sequence of matrices satisfying (20) and

Kα ≡
{
(t, x) ∈ [0, T ]×BR :

ˆ
F dv > α

}
.

Then, for every α, ε > 0 there exists a measurable set |E| < ε such that

an,mn

ij (t, x, v)ηiηj ≥ C(α, ε)|η|2,

for (x, t, v, η) ∈ (Kα ∩ Ec)×BR × RN and n ≥ n0(ε, α).

This ellipticity, together with Lemma 4, gives us an estimate for the derivatives of f in v, which
incurs a compactness in the variable v. Having already established compactness in t and x from the
averaging lemmas in the last section, the next question is whether we can unify these two results
into a single compactness in the three variables t, x, v.

The next proposition, which was also stated and proven in [11], shows us that this question is
answered in the affirmative.

Proposition 2. Let T > 0 and (Φn)n be a sequence of functions such that Φn ∗
⇀ Φ in L∞((0,∞)×

R2N
x,v). Suppose that, for each T,R > 0,

i. Quasi-bounded in v: for every ε, α > 0, there exists a C = C(ε, α) and a measurable set
E, with |E| ≤ ε such that˚

(Kα∩Ec)×BR

|∇vΦ
n|2 dtdxdv ≤ C(ε, α)

where Kα =
{
(t, x) ∈ [0, T ]×BR :

´
Φ dv > α

}
,

ii. Velocity averages: for every φ ∈ C∞
c (RNv ), (

´
Φnφdv)n is compact in L1([0, T ]×BR).

Thus, passing to a subsequence, we have Φn → Φ almost everywhere in (0,∞)× R2N
x,v.

Now we can finally gather all the above results to prove the proposition of this section
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Proof of Lemma 3. First, it follows from Lemma 4 that for every T,R > 0, there exists a CT,R > 0
such that ˚

(0,T )×BR×BR

an,mn

ij

∂β1(f
n
mn

)

∂vi

∂β1(f
n
mn

)

∂vj
dtdxdv ≤ CT,R.

One would then like to chain together Lemmas 5 and 6. Since we have (??), for every diagonal
sequencemn such thatmn ≥Mn,T we have a subsequence such that fnmn

⇀ f weakly in L1
loc((0,∞)×

R2N
x,v). Passing to a further subsequence in n, we have that βδ(Fnmn

)
∗
⇀ b weakly in L∞((0,∞)×R2N

x,v),
for some bounded function b.

Note that we cannot apply directly Proposition 2 here, since, the Kα that is given by Lemma 6,
defined in terms of

´
F dv, is not necessarily the same as the one in the statement of Proposition 2,

which is written in terms of
´
b dv.

To fix this, notice that

|βδ(Fnmn
)− βδ(f

n
mn

)| ≤ δ−1εnf
n
mn
,

which implies ∣∣∣∣ˆ βδ(F
n
mn

)φ−
ˆ
βδ(f

n
mn

)φ

∣∣∣∣ ≤ δ−1εn

ˆ
fnmn

φ

for every φ ∈ C∞((0,∞) × R2N
x,v), and thus this quantity converges to zero as n → ∞. Using that

βδ(t) ≤ t it follows that, for every φ ∈ C∞ such that φ ≥ 0 satisfies
ˆ
txv

βδ(F
n
mn

)φ ≤
ˆ
txv

Fnmn
φ,

which passing to the limit implies that b ≤ F almost everywhere.
Thus, we have that

K ′
α ≡

{
(t, x) ∈ [0, T ]×BR :

ˆ
b dv > α

}
⊂

{
(t, x) ∈ [0, T ]×BR :

ˆ
F dv > α

}
≡ Kα

and therefore Lemma 6 will give us that, in particular,
˚

(K′
α∩Ec)×BR

∣∣∇vβ1(f
n
mn

)
∣∣2 ≤ C(ε, α),

and then since the velocity averages
´
β1(f

n
mn

)φ dv are compact, Proposition 2 then implies that,
passing to a subsequence, we have β1(fnmn

) converging almost everywhere in (0,∞) × R2N
x,v, which

implies that fnmn
also converges a.e. in this space.

Since this sequence is weakly compact in L1
loc((0,∞);L1(R2N

x,v)), we can then infer the strongly
compactness in this space from Scheffé’s lemma. □

6. Proof of Theorem 1

We now have all the necessary ingredients for the proof of Theorem 1, which we will divide into
two sections. In the first part, we’ll apply the compactness results we’ve seen so far to show that
the solutions of the Landau-Fermi-Dirac equation converge to renormalized solutions of the Landau
equation, as in Villani’s definition. In the second part of the proof, we will show the convergence
of the conservation laws and the dissipation of entropy, showing that the entropy inequality is still
valid for solutions in the semi-classical limit.
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6.1. Convergence to renormalized solutions. For each n, let (fnm)m be an approximating
scheme converging to fn, with coefficients an,m and b

n,m
.

Let Bn = (0, n) × Bx(0, n) × Bv(0, n) be the t, x, v ball with radius n. Since fnm → fn in
L1
loc((0,∞)× R2N

x,v) we can suppose, up to passing to subsequences in m, that

(33) ∥fn − fnm∥L1 ≤ 1

n

for every m ∈ N, as well as

(34) ∥an,mij − anij∥L1(Bn),

∥∥∥∥∥∂a
n,m
ij

∂vj
−
∂anij
∂vj

∥∥∥∥∥
L1(Bn)

, ∥bn,mi − b
n

i ∥L1(Bn), ∥c
n,m − cn∥L1(Bn) ≤

1

n
,

from the convergences in Definition 3.
This way, by chaining Lemmas 1 and 3 we obtain a diagonal sequence (fnmn

)n that is strongly
compact in L1

loc((0,∞)× R2N
x,v) and we can then pass to a convergent subsequence.

For conciseness, we will notate fnn instead of fnmn
, as well as an,n instead of an,mn for the other

coefficients and so on. Passing to a further subsequence we have that

(35) fnn → f in L1
loc((0,∞);L1(R2N

x,v)) and a.e. in (0,∞)× R2N
x,v.

Since fnn ∈ L2
loc((0, T )×RNx ;H1

loc(RNv )), Proposition 1 ensures that fnn satisfies the renormalized
formulation, that is, for every δ > 0, taking βδ(t) = t

1+δt , we have

∂βδ(f
n
n )

∂t
+ v · ∇xβδ(f

n
n ) =

∂

∂vi

{
an,nij

∂βδ(f
n
n )

∂vj
− b

n.n

i (1− 2εnf
n
n )βδ(f

n
n )− 2εnb

n,n

i B(fnn )

}
− β′′

δ (f
n
n )a

n,n
ij

∂fnn
∂vi

∂fnn
∂vj

− cn,n [fnn (1− εnf
n
n )β

′
δ(f

n
n )− (1− 2εnf

n
n )βδ(f

n
n )− 2εnBδ(f

n
n )]

in D′((0,∞)× R2N
x,v).

From (35) we have βδ(fnn ) → βδ(f) a.e., thus since |βδ(fnn )| ≤ 1
δ , it follows that

∂βδ(f
n
n )

∂t
+ v · ∇xβδ(f

n
n ) →

∂βδ(f)

∂t
+ v · ∇xβδ(f).

in D′((0,∞)× R2N
x,v).

Next, let us prove the convergence of the coefficients an,nij ,
∂an,n

ij

∂vj
, b
n,n

i and cn,n.
Consider anij = aij ∗v (fn(1 − εfn)). Recall that the convolution of a function g with a signed

measure µ is the function defined by

(µ ∗ g)(x) ≡
ˆ
g(x− x∗)dµ(x∗)

and we have the inequality
∥µ ∗ g∥L1 ≤ ∥g∥L1 |µ|(RN ).

Therefore if gn → g in L1, then µ ∗ gn → µ ∗ g in L1. For anij we need a strong convergence
result for fn(1 − εnf

n). We have that fn(1 − εnf
n) → f almost everywhere. Since for every n we

have |fn(1− εnf
n)| ≤ fn, the sequence fn converges to f almost everywhere and in L1, thus by

dominated convergence, fn(1− εnf
n) → f in L1.

This implies that anij → aij ,
∂anij
∂vj

→ ∂aij
∂vj

, b
n

i → bi and cn → c in L1
loc((0,∞)× R2N

x,v), then using
(34), we have that

an,nij → aij ,
∂an,nij
∂vj

→ ∂aij
∂vj

, b
n,n

i → bi, c
n,n → c
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in L1
loc((0,∞) × R2N

x,v) and, by passing to a further subsequence, a.e. in (0,∞) × R2N
x,v. Notice that

since |βδ(fnn )| ≤ 1
δ we have, from dominated convergence, that βδ(fn)

∗
⇀ βδ(f) in L∞((0,∞)×R2N

x,v).
Following Remark 1, we consider

an,nij
∂βδ(f

n
n )

∂vj
=

∂

∂vj

[
an,nij βδ(f

n
n )

]
−
∂an,nij
∂vj

βδ(f
n
n ),

and by weak-strong convergence, an,nij βδ(f
n
n ) → aijβδ(f),

∂an,n
ij

∂vj
βδ(f

n
n ) →

∂aij
∂vj

βδ(f) in D′((0,∞) ×
R2N
x,v) which implies

an,nij
∂βδ(f

n
n )

∂vj
→ ∂

∂vi
[aijβδ(f)]−

∂aij
∂vj

βδ(f)

which we will denote aij
∂βδ(f)
∂vj

.
Next, since 0 ≤ fnn ≤ ε−1

n , we have that |1− 2εnf
n
n | ≤ 3 and dominated convergence implies

(1− 2εnf
n
n )βδ(f

n
n )

∗
⇀ βδ(f) in L∞((0,∞)× R2N

x,v).

Next, there exists a constant C > 0 such that |Bδ(t)| ≤ t/δ +C, for every t ≥ 0, which implies that

εnBδ(f
n
n )

∗
⇀ 0 in L∞((0,∞)× R2N

x,v),

again by dominated convergence.
Hence, as before, we have by weak-strong convergence that

∂

∂vi

[
b
n,n

i (1− 2εnf
n
n )βδ(f

n
n ) + 2εnb

n,n

i Bδ(f
n
n )

]
→ ∂

∂vi

[
biβδ(f)

]
in D′((0,∞)× R2N

x,v).
Also, since |fnn (1− εnf

n
n )| ≤ fnn and tβ′

δ(t) =
t

(1+δt)2 ≤ 1
4δ for every t ≥ 0 we have that

fnn (1− εnf
n
n )β

′
δ(f

n
n )

∗
⇀ fβ′

δ(f) in L∞((0,∞)× R2N
x,v).

Thus, from weak-strong convergence,

cn,n [fnn (1− εnf
n
n )β

′
δ(f

n
n )− (1− 2εnf

n
n )βδ(f

n
n )− 2εnBδ(f

n
n )] → c [fβ′

δ(f)− βδ(f)]

in D′((0,∞)× R2N
x,v).

It remains just to prove the convergence of the quadratic term

(36) −β′′
δ (f

n
n )a

n,n
ij

∂fnn
∂vi

∂fnn
∂vj

in the sense of distributions. Let then

γδ(t) = − 2
√
2√

δ(1 + δt)
,

notice this implies (γ′δ(t))
2 = 2δ

(1+δt)3 = −β′′
δ (t). We can then rewrite

ˆ
txv

−β′′
δ (f

n
n )a

n,n
ij

∂fnn
∂vi

∂fnn
∂vj

φ =

ˆ
txv

an,nij
∂γδ(f

n
n )

∂vi

∂γδ(f
n
n )

∂vj
φ,
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for every φ ∈ C∞
c ((0,∞)× R2N

x,v) such that φ ≥ 0 and by (18) this is larger than
ˆ
txv

[amn ∗v (fnn (1− εnf
n
n ))]

∂γδ(f
n
n )

∂vi

∂γδ(f
n
n )

∂vj
φ

=

ˆ
txv

ˆ
v∗

amn(v − v∗)f
n
n (v∗)(1− εnf

n
n (v∗))

∂γδ(f
n
n )

∂vi

∂γδ(f
n
n )

∂vj
φ

=

ˆ
txv

ˆ
v∗

∣∣∣√amn(v − v∗)
√
fnn (v∗)(1− εnfnn (v∗))∇vγδ(f

n
n )

∣∣∣2 φ,
where

√
amn

(v − v∗) denotes the matrix square root of amn
(v− v∗). For conciseness of notation, let

us write an instead of amn
. Hence, there exists a positive Radon measure

(37) νn ≡ −β′′
δ (f

n
n )a

n,n
ij

∂fnn
∂vi

∂fnn
∂vj

−
∣∣∣√an(v − v∗)

√
fnn (v∗)(1− εnfnn (v∗))∇vγδ(f

n
n )

∣∣∣2
and we have

⟨νn, φ⟩ ≤
ˆ
txv

−β′′
δ (f

n
n )a

n,n
ij

∂fnn
∂vi

∂fnn
∂vj

φ.

This last quantity is uniformly bounded in n thanks to Lemma 4, thus up to passing to a subsequence
in n, there exists a positive measure µ such that

νn ⇀ ν in Mloc((0,∞)× R3N
xvv∗)

where R3N
xvv∗ denotes the space RNx × RNv × RNv∗ .

Then, we rewrite the term inside the square of (37) as

(38)
√
an(v − v∗)

√
fnn (v∗)(1− εnfnn (v∗))∇vγδ(f

n
n ) =

divv

[√
an(v − v∗)

√
fnn (v∗)(1− εnfnn (v∗))γδ(f

n
n )

]
− divv

[√
an(v − v∗)

]√
fnn (v∗)(1− εnfnn (v∗))γδ(f

n
n ).

The matrices an have a fixed form, given by (18) and therefore by the uniqueness of the square
root of positive matrices,

(39)
√
an(z) =

√
Γn(|z|)

(
I − z ⊗ z

|z|2

)
,

which implies, thanks to the convergence of Γn(|z|), that
√
an(z) →

√
a(z) in L2

loc(RN ) up to
possibly passing to a subsequence in n. Since√

fnn (v∗)(1− εnfnn (v∗)) →
√
f∗ in L2

loc((0,∞)× R3N
xvv∗)

and γδ(fnn ) → γδ(f) in L1
loc((0,∞)× R3N

xvv∗), we can deduce that√
an(v − v∗)

√
fnn (v∗)(1− εnfnn (v∗))γδ(f

n
n ) →

√
a(v − v∗)

√
f∗γδ(f)

in L1
loc((0,∞)× R3N

xvv∗).
Next, notice that the explicit formula (39) allows us to calculate the divergence of the matrix

√
a,

giving

divz

[√
an(z)

]
= −(N − 1)

√
Γn(|z|)

z

|z|2
,
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which converges to divz(
√
a(z)) in L1

loc((0,∞)× R3N
xvv∗) and therefore we have that

(40)
√
an(v − v∗)

√
fnn (v∗)(1− εnfnn (v∗))∇vγδ(f

n
n )

→ divv

[√
a(v − v∗)

√
f∗γδ(f)

]
− divv

[√
a(v − v∗)

]√
f∗γδ(f)

in D′((0,∞) × R2N
x,v), and we notate the limit distribution as

√
a(v − v∗)

√
f∗∇vγδ(f). Lemma 4

gives us that (36) is bounded in L1
loc((0,∞) × R2N

x,v), which then implies that (38) is uniformly
bounded in L2

loc((0,∞) × R2N
x,v;L

2(RNv∗)). Hence the convergence (40) actually holds weakly in
this space and the limit distribution

√
a(v − v∗)

√
f∗∇vγδ(f) can be represented by a function in

L2
loc((0,∞)× R2N

x,v;L
2(RNv∗)).

This implies there exists some positive defect measure µ such that∣∣∣√an(v − v∗)
√
fnn (v∗)(1− εnfnn (v∗))∇vγδ(f

n
n )

∣∣∣2 ⇀ ∣∣∣√a(v − v∗)
√
f∗∇vγδ(f)

∣∣∣2 + µ

weakly in L1
loc((0,∞)× R3N

xvv∗) and thus the quadratic term can be written asˆ
v∗

∣∣∣√a(v − v∗)
√
f∗∇vγδ(f)

∣∣∣2 .
6.2. Conservation laws and entropy inequality. So far we have used the approximation schemes
(fnn )n to show that f satisfies the renormalized Landau equation with defect measure. In this second
part of the proof, we will use the fact that the (fn)n are weak solutions of the LFD equation to
conclude that f satisfies the conservation laws and inequalities of the Definition 1.

Notice that inequality (33) applied to the diagonal subsequence (35) implies in particular that

(41) fn → f in L1
loc((0,∞), L1(R2N

x,v))

and passing to a subsequence in n we conclude that fn(t) → f(t) in L1
loc(R2N

x,v) for almost every
t ≥ 0, hence we have

(42)
ˆ
xv

f(t) = lim
n→∞

ˆ
xv

fn(t) = lim
n→∞

ˆ
xv

fn0 =

ˆ
xv

f0,

which implies the conservation of mass. Next we have, from Fatou’s lemma,ˆ
xv

f(t)ψ ≤ lim inf
n→∞

ˆ
xv

fn(t)ψ ≤ lim inf
n→∞

ˆ
xv

fn0 ψ =

ˆ
xv

f0ψ,

for ψ = |v|2 or ψ = |x − tv|2, which implies the inequalities of kinetic energy and momentum of
inertia, respectively. Finally, by interpolation, we find thatˆ

xv

f(t)vi =

ˆ
xv

f0vi,

which corresponds to the conservation of momentum.

6.3. Entropy inequality. Finally, let us show that the entropy inequality holds for the limit solu-
tion f . Since fn is a weak solution of LFD with quantum parameter εn and initial data fn0 , it obeys
the quantum entropy inequality,

(43)
1

εn

ˆ
xv

εnf
n log(εnf

n) + (1− εnf
n) log(1− εnf

n) +

ˆ t

0

ˆ
xv

dn ≤

1

εn

ˆ
xv

εnf
n
0 log(εnf

n
0 ) + (1− εnf

n
0 ) log(1− εnf

n
0 ),
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where dn is the entropy dissipation (15) with quantum parameter εn, using the interpretation from
Remark 4. From the conservation of mass (42) we can rewrite inequality (43) asˆ

xv

fn log fn +
1− εnf

n

εn
log(1− εnf

n) +

ˆ t

0

ˆ
xv

dn ≤
ˆ
xv

fn0 log fn0 +
1− εnf

n
0

εn
log(1− εnf

n
0 ).

But since for every 0 ≤ x ≤ ε−1 one has

−x ≤ 1− εx

ε
log(1− εx) ≤ −x+ εx2,

the above inequality becomes

(44)
ˆ
xv

fn log fn +

ˆ t

0

ˆ
xv

dn ≤
ˆ
xv

fn0 log fn0 + εn

ˆ
xv

(fn0 )
2,

where we have used once again the conservation (42).
Since εn(f

n
0 )

2 ≤ fn0 we have from (19) and dominated convergence that the right-hand side
converges to ˆ

xv

f0 log f0.

From (41), we may extract a further subsequence such that

(45) fn → f a.e. in (0,∞)× R2N
x,v

which then implies, from Fatou’s lemma, that

(46)
ˆ
xv

f log f + lim inf
n→∞

ˆ t

0

ˆ
xv

dn ≤
ˆ
xv

f0 log f0.

So all that remains is to pass the entropy dissipation dn to the limit. From Remark 4 we recall
that, since we don’t suppose any regularity of f in v, the

´ t
0

´
xv
dn should be instead be viewed as

a notation for ∥Dn∥2L2 of the norm of Dn in L2((0, t)× R3N
xvv∗), where Dn is the function

Dn = divv

(√
a(v − v∗)

√
fn∗ (1− εnfn∗ )

2
√
εn

arcsin
√
εnfn

)
− divv

(√
a(v − v∗)

)√
fn∗ (1− εnfn∗ )

2
√
εn

arcsin
√
εnfn

− divv∗

(√
a(v − v∗)

√
fn(1− εnfn)

2
√
εn

arcsin
√
εnfn∗

)
+ divv∗

(√
a(v − v∗)

)√
fn(1− εnfn)

2
√
εn

arcsin
√
εnfn∗

From (45) we can deduce that

(47)
√
a(v − v∗)

√
fn∗ (1− εnfn∗ )

arcsin
√
εnfn√

εnfn

√
fn →

√
a(v − v∗)

√
ff∗

for almost every (t, x, v, v∗) ∈ (0,∞)× R3N
xvv∗ . We also have that∣∣∣∣√a(v − v∗)

√
fn∗ (1− εnfn∗ )

arcsin
√
εnfn√

εnfn

√
fn

∣∣∣∣ ≤ π

2

∣∣∣√a(v − v∗)
√
fn∗

√
fn

∣∣∣ .
The convergence (41) implies there exists a function g in L1

loc((0,∞), L1(R2N
x,v)) such that, passing

to a subsequence in n, we have |fn| ≤ g uniformly in n. This in turn implies∣∣∣√a(v − v∗)
√
fn∗

√
fn

∣∣∣ ≤ ∣∣∣√a(v − v∗)
√
g∗
√
g
∣∣∣ .
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Let us show that this function is in L1
loc((0,∞)× R3N

xvv∗). Indeed, from uniqueness of the square
root of positive matrices,

(48)
√
a(z) =

√
Γ(|z|)

(
I − z ⊗ z

|z|2

)
,

which in view of (10) and
√
x ≤ 1 + x for every x ≥ 0, implies there exist functions α ∈ L1(RN )

and β ∈ L∞(RN ) such that
√
a(z) = α(z) + β(z). Consider the compact sets Ktx ⊂ (0,∞) × RNx ,

Kv ⊂ RNv and Kv∗ ⊂ RNv∗ , then
ˆ
Ktx×Kv×Kv∗

∣∣∣√a(v − v∗)
∣∣∣
ij

√
g∗
√
g ≤

(
∥α∥L1 + ∥β∥L∞ |Kv|1/2|Kv∗ |1/2

)
×

× ∥g∥1/2L1(Ktx×Kv)
∥g∥1/2L1(Ktx×Kv∗ )

,

hence, by dominated convergence, (47) holds in L1
loc((0,∞)× R3N

xvv∗).
Next, the explicit expression (48) allows us to compute the divergence of this matrix, leading

divz

[√
a(z)

]
= −(N − 1)

√
Γ(|z|) z

|z|2
.

The integrability (10) allows us to deduce that divz
√
a(z) is also in L1(RN )+L∞(RN ) and as before

we deduce that

(49) divv

(√
a(v − v∗)

)√
fn∗ (1− εnfn∗ )

arcsin
√
εnfn√

εnfn

√
fn → divv

(√
a(v − v∗)

)√
ff∗

in L1
loc((0,∞)× R3N

xvv∗).
The convergences (47) and (49) imply that

(50) divv

(√
a(v − v∗)

√
fn∗ (1− εnfn∗ )

2
√
εn

arcsin
√
εnfn

)
− divv

(√
a(v − v∗)

)√
fn∗ (1− εnfn∗ )

2
√
εn

arcsin
√
εnfn

→ divv

(√
a(v − v∗)

√
ff∗

)
− divv

(√
a(v − v∗)

)√
ff∗

in D′((0,∞)×R3N
xvv∗). Exchanging v and v∗ and summing it to (50), we conclude that Dn converges

to

D ≡ 2 divv

(√
a(v − v∗)

√
ff∗

)
− 2 divv

(√
a(v − v∗)

)√
ff∗

− 2 divv∗

(√
a(v − v∗)

√
ff∗

)
+ 2divv∗

(√
a(v − v∗)

)√
ff∗

in D′((0,∞)× R3N
xvv∗).

On the other hand, we have from (44) that

∥Dn∥2L2 =

ˆ t

0

ˆ
xv

dn ≤
ˆ
xv

fn0 log fn0 +

ˆ
xv

fn0 −
ˆ
xv

fn log fn,

and thus Dn is uniformly bounded in L2((0,∞)×R3N
xvv∗) and we have Dn ⇀ D weakly in this space.

Then, from the lower semi-continuity of the norm with respect to the weak convergence we haveˆ t

0

ˆ
xv

d ≡ ∥D∥2L2 ≤ lim inf
n→∞

∥Dn∥2L2 = lim inf
n→∞

ˆ t

0

ˆ
xv

dn

which, together with (46), leads the result.
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7. Proof of Theorem 2

It remains just to prove the convergence of the quadratic term −β′′
δ (f

n
n )a

n,n
ij

∂fn
n

∂vi

∂fn
n

∂vj
. As before,

we can’t prove this converges to something expressible as a function of the objects we have thus far
and as a consequence this term which will be responsible for the appearance of a defect measure.
Indeed let

γδ(t) = − 2
√
2√

δ(1 + δt)
,

and we rewrite, in the sense of distributions,

−β′′
δ (f

n
n )a

n,n
ij

∂fnn
∂vi

∂fnn
∂vj

= an,nij
∂γδ(f

n
n )

∂vi

∂γδ(f
n
n )

∂vj

= ⟨an,n∇v(γδ(f
n
n )),∇v(γδ(f

n
n ))⟩

=
∣∣∣√an,n∇v(γδ(f

n
n ))

∣∣∣2
Rewriting the function inside the absolute value as

(51)
(√
an,n

)
ij

∂γδ(f
n
n )

∂vj
=

∂

∂vj

[(√
an,n

)
ij
γδ(f

n
n )

]
−
∂
(√
an,n

)
ij

∂vj
γδ(f

n
n ),

as before, we want to apply some weak-strong convergence result here to at least deduce the con-
vergence of this term in the sense of distributions. However, it soon becomes clear that these are
not directly applicable in this case, since the convergence properties of the matrix

√
an,n cannot be

deduced directly from the convergence of an,n alone. For example, the singularities of the derivatives
of the square root of a matrix when close to zero prevent us from concluding the convergence of the
second term in (51).

What we can do then is approximate this matrix by one that is more regular and therefore we
can deduce this term in the limit. We then follow an approach close to Villani’s in [13] and consider
the approximation of the square root Sk(M) = Λk(M)χk(M)

√
M , where χk is a C∞(Sn+) function,

defined on the space of positive semi-definite matrices Sn+ such that

χk(M) =

{
1, if λmax(M) ≤ k and λmin(M) ≥ 1

k

0, if λmax(M) ≥ 2k or λmin(M) ≤ 1
2k

where λmin(M) and λmax denote respectively the smallest and the largest eigenvalue of M . In other
words, we truncate

√
M at high values and at the singularity at zero. We can show that Sk is a

C∞
c function such that Sk(M) → M for every positive semi-definite matrix M . Also, the sequence

(Sk(M))k is increasing with respect to the matrix order and we have Sk(M) ≤
√
M .

Then, (
Sk(an,n)2

)
ij

∂γδ(f
n
n )

∂vi

∂γδ(f
n
n )

∂vj
=

∣∣Sk(an,n)∇v(γδ(f
n
n ))

∣∣2
and for the term inside the absolute value we have the convergence(

Sk(an,n)
)
ij

∂γδ(f
n
n )

∂vj
=

∂

∂vj

[(
Sk(an,n)

)
ij
γδ(f

n
n )

]
−
∂
(
Sk(an,n)

)
ij

∂vj
γδ(f

n
n )y

∂

∂vj

[(
Sk(a)

)
ij
γδ(f)

]
−
∂
(
Sk(a)

)
ij

∂vj
γδ(f) ≡

(
Sk(a)

)
ij

∂γδ(f)

∂vj

(52)
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in the sense of distributions.
Indeed, for each k, Sk is a Lipschitz function, the convergence of an,n → a in L1

loc((0,∞)×R2N
x,v)

implies that Sk(an,n) → Sk(a) in L1
loc((0,∞) × R2N

x,v). Moreover, the derivatives of Sk are also

Lipschitz, implying the convergence of ∂Sk(an,n)
∂vj

→ ∂Sk(a)
∂vj

in L1
loc((0,∞)× R2N

x,v).

Notice that the equality with
(
Sk(a)

)
ij

∂γδ(f)
∂vj

in (52) is a definition of a notation, rather than
the proof of this limit, so it’s important to notice that this product of functions is not necessarily
a pointwise one. One should rather see the above expression as a black box. We will also notate
Sk(a)∇vγδ(f) the vector such that the i-th component is equal to

(
Sk(a)

)
ij

∂γδ(f)
∂vj

.
Even though we have defined a notation for the limit distribution rather than calculated, we

can nevertheless show that this distribution can be represented by an L2
loc((0,∞)× R2N

x,v) function.
Indeed, since Sk(M) ≤

√
M , we have that

(53)
(
Sk(an,n)2

)
ij

∂γδ(f
n
n )

∂vi

∂γδ(f
n
n )

∂vj
≤ an,nij

∂γδ(f
n
n )

∂vi

∂γδ(f
n
n )

∂vj

and from Lemma 4, this last term is uniformly bounded in L1
loc((0,∞)× R2N

x,v), which then implies(
Sk(an,n)∇v(γδ(f

n
n ))

)
n

is uniformly bounded in L2
loc((0,∞)×R2N

x,v), for every k. We have, therefore

(54) Sk(an,n)∇v(γδ(f
n
n ))⇀ Sk(a)∇v(γδ(f)) in L2

loc((0,∞)× R2N
x,v)

and the distributions Sk(a)∇vγδ(f) can be represented by L2
loc functions.

This implies in particular that |Sk(an,n)∇v(γδ(f
n
n )) − Sk(a)∇vγδ(f)| is uniformly bounded in

L2
loc((0,∞)× R2N

x,v). Let then µk be a measure such that, passing to a subsequence in n,

(55)
∣∣Sk(an,n)∇v(γδ(f

n
n ))− Sk(a)∇vγδ(f)

∣∣2 ⇀ µk,

and this way we also have that, for a compact set K,

|µk|(K) ≤ lim inf
n→∞

∥∥∥∣∣Sk(an,n)∇v(γδ(f
n
n ))− Sk(a)∇vγδ(f)

∣∣2∥∥∥
L1(K)

≤ 4 lim inf
n→∞

∥Sk(an,n)∇v(γδ(f
n
n ))∥2L2(K)

≤ 4 lim inf
n→∞

∥an,n∇v(γδ(f
n
n ))∇v(γδ(f

n
n ))∥L1(K)

where the last inequality comes from (53). Hence, (µk)k is bounded in Mloc((0,∞) × R2N
x,v), and

thus extracting a subsequence in k we have that µk ⇀ µ.
Lower semi-continuity of the L2 norm with respect to weak convergence implies, using (54), that

for every T,R > 0 we haveˆ
(0,T )×BR×BR

|Sk(a)∇v(γδ(f))|2 ≤
ˆ
(0,T )×BR×BR

|Sk(an,n)∇v(γδ(f
n
n ))|2

and from (53) the right-hand side is uniformly bounded by a constant. Extracting a subsequence in
k we impose

Sk(a)∇v(γδ(f))⇀
√
a∇v(γδ(f)),

that is, as before, the distribution
√
a∇v(γδ(f)) is a notation for the limit of the sequence Sk(a)∇v(γδ(f)),

which can be represented by an L2
loc function.

Once again, notice that the above definitions are just notations representing distributions and
should not be seen as a pointwise product of functions, if we have no additional hypotheses about
the regularity of the functions in question. If we knew that this was a pointwise product, we could



ON THE SEMI-CLASSICAL LIMIT FOR THE LANDAU-FERMI-DIRAC EQUATION 31

easily show the convergence of Sk(a)∇vγδ(f) to
√
a∇vγδ(f). Indeed that’s the case for fnn . Since

χk is an increasing sequence converging a.e. to the constant function 1 we have by Beppo-Levi that

(56) |Sk(an,n)∇v(γδ(f
n
n ))|2 = χk(an,n)2|

√
an,n∇v(γδ(f

n
n ))|2 → |

√
an,n∇v(γδ(f

n
n ))|2

in L1
loc((0,∞)× R2N

x,v).
This argument doesn’t work directly with Sk(a)∇vγδ(f), because this is not necessarily the point-

wise product of Sk(a) with ∇vγδ(f). However, the following result shows us that this convergence
occurs even if we don’t have this property.

Now, this result, combined with (55), (56) and the fact that µk → µ implies that∣∣∣√an,n∇v(γδ(f
n
n ))

∣∣∣2 ⇀ ∣∣∣√a∇vγδ(f)
∣∣∣2 + µ.

and then it suffices to notice that∣∣∣√an,n∇v(γδ(f
n
n ))

∣∣∣2 = an,n∇v(γδ(f
n
n ))∇v(γδ(f

n
n )) = −β′′

δ (f
n
n )a

n,n
ij

∂fnn
∂vi

∂fnn
∂vj

and to define −β′′
δ (f)aij

∂f
∂vi

∂f
∂vj

as the square of the L2
loc((0,∞)× R2N

x,v) function
√
a∇v(γδ(f)).
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